DREME: motif discovery in transcription factor ChIP-seq data
نویسندگان
چکیده
منابع مشابه
DREME: motif discovery in transcription factor ChIP-seq data
MOTIVATION Transcription factor (TF) ChIP-seq datasets have particular characteristics that provide unique challenges and opportunities for motif discovery. Most existing motif discovery algorithms do not scale well to such large datasets, or fail to report many motifs associated with cofactors of the ChIP-ed TF. RESULTS We present DREME, a motif discovery algorithm specifically designed to f...
متن کاملCisMapper: predicting regulatory interactions from transcription factor ChIP-seq data
Identifying the genomic regions and regulatory factors that control the transcription of genes is an important, unsolved problem. The current method of choice predicts transcription factor (TF) binding sites using chromatin immunoprecipitation followed by sequencing (ChIP-seq), and then links the binding sites to putative target genes solely on the basis of the genomic distance between them. Ev...
متن کاملInferring transcription factor complexes from ChIP-seq data
Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) allows researchers to determine the genome-wide binding locations of individual transcription factors (TFs) at high resolution. This information can be interrogated to study various aspects of TF behaviour, including the mechanisms that control TF binding. Physical interaction between TFs comprises one important asp...
متن کاملExtracting transcription factor targets from ChIP-Seq data
ChIP-Seq technology, which combines chromatin immunoprecipitation (ChIP) with massively parallel sequencing, is rapidly replacing ChIP-on-chip for the genome-wide identification of transcription factor binding events. Identifying bound regions from the large number of sequence tags produced by ChIP-Seq is a challenging task. Here, we present GLITR (GLobal Identifier of Target Regions), which ac...
متن کاملA review of ensemble methods for de novo motif discovery in ChIP-Seq data
De novo motif discovery is a difficult computational task. Historically, dedicated algorithms always reported a high percentage of false positives. Their performance did not improve considerably even after they adapted to handle large amounts of chromatin immunoprecipitation sequencing (ChIP-Seq) data. Several studies have advocated aggregating complementary algorithms, combining their predicti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2011
ISSN: 1460-2059,1367-4803
DOI: 10.1093/bioinformatics/btr261